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Comparison	of	Microarray	and	RNA‐seq	
Analysis	Methods	for	Single	Cell	Transcriptomics	

 

Introduction	
 
Behavior of single cells can be explained through changes in the transcription level of the 
genome followed by translation of the resulting mRNA into proteins (1). Changes in gene 
expression levels of each cell, in turn, are controlled by sensory networks that respond to the 
external environment. Even though within an organism or tissue all cells have the same genome, 
diverse phenotypes exist because of varying type and amounts of mRNA transcripts referred to 
as the transcriptome of the cell (1-3). Because of the existence of such heterogeneity within an 
isogenic cell population, transcriptome analysis at single cell resolution becomes crucial to 
identify cell to cell spatiotemporal variations that are often masked by ensemble averages (3, 4). 
 
One example that illustrates the distinction between single cell and bulk measurement is 
performed by Mathies group which looked at GAPDH expression in individual Jurkat cells 
(Figure 1). Their data shows that the average expression level of 50 cells is not representative 
of any individual cell (5). Another example deals with the study of NF-kB expression in mouse 
fibroblast cells in response to TNF-α using high throughput microfluidics. In contrast to 
population level studies showing gradual analog changes in expression levels, results show 
digital activation at the single cell level (6). These experiments show the importance of 
measuring gene expression at a single cell level. 
 

 
Figure 1: Single cell studies show ensemble average misses individual variations within a population. (A) Expression 
patters of GAPDH in 50 individual Jurkat cells show that population average is not representative of any individual (5). 
(B) Contrary to previous studies, NF-kB expression in mouse fibroblast cells occur digitally in response to 10 ng ml-1 
TNF-α (6). 

Currently, gene expression microarrays and RNA-seq are two popular ways of extracting single 
cell transcriptome data. Both methods allow high throughput analysis of many cells and gene 
targets. Developed in the 1990s, high density microarrays are more mature than deep 
sequencing technologies. With a good understanding of the technology biases and costing less 
per experiment, microarrays can differentiate cell and tissue types and show how expression 
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changes across development, diseases, within and among species (7, 8). However, microarray 
suffers from background hybridization, limited accuracy of expression for transcripts in low 
abundance, and cannot be used to detect splice variants or unknown genes (1). RNA-seq, on 
the other hand, provides direct access to the sequence without a reference genome or pre-
designed probes. It provides a larger dynamic range (five-log) and can be used to detect splice 
variants, isoforms, and new genes. However, RNA-seq experiments are typically high cost, and 
sources of bias such as coverage and heterogeneity are not well studied (8). RNA-seq 
experiments often generate orders of magnitude more data than microarrays, requiring much 
more complex informatics to extract meaningful results. 
 

Microarray	Technology	
 

 
Figure 2: Schematic overview of probe and target preparation for microarray experiments using (A) cDNA and (B) 
high density oligonucleotides 
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Microarray experiments include two components: probe and target. Probe could be prepared 
using cDNA or pre-synthesized oligonucleotides. Probes are either attached to silicon wafers 
using photolithography (Affymetrix) or printed onto a glass slide (Agilent Technologies). During 
target preparation, total RNA is usually extracted from the cell sample followed by poly A 
selection (7, 9). The selected mRNA is then converted to single strand cDNA fragments in the 
presence of fluorescently labeled nucleotides. The target cDNA is hybridized to immobilized 
probes on the microarray surface. Finally, unbound material is washed off and data is collected 
as fluorescent images whose intensity represents mRNA abundance (10). Figure 2 illustrates 
typical process flows for microarray experiments using cDNA library and high-density 
oligonucleotides. 
 

Microarray	Analysis	Methods		
 
The true power of microarray becomes apparent when probing global gene expression patterns. 
Because such experiments generate large amounts of data, systematic methods are required to 
organize and extract meaningful expression relations. Since microarray technology is relatively 
mature, many commercially available packages exist including GeneCluster, Expression Profiler, 
XCluster, and Cleaver (10, 11). These packages employ a variety of algorithms to perform 3 
main functions: normalization, grouping, and feature reduction. 
 
Normalization 
 
Normalization is a technique that removes systematic variations in microarray data (ie. 
Intensities of fluorescent labels in the final images). Many sources of variation exist including 
differences in labeling efficiency between different dyes, differences in the power of lasers used 
to image the microarray, differences in hybridization efficiencies, and spatial biases across the 
microarray surface (12).  In terms of single cell experiments, we are often interested in small 
differences in expressions patterns among subpopulations (spatial) or same cells at different 
time points (temporal). In order to distinguish small differential expressions, removing global 
bias becomes important.  
 
One commonly used normalization method involves preselecting housekeeping genes which 
are assumed to be constantly expressed under testing conditions. The expression level of these 
genes is used to generate a normalization factor which makes the geometric mean of this set of 
genes 1. An alternative method that uses all samples to generate this normalization factor is 
used when none of the genes in the experiment can be considered “housekeeping”. When 
applied, this method makes the mean log ratio of all the data equal to zero. In other words, this 
method shifts the distribution so that it is centered on 0. Intensity dependent normalization is 
another method that compensates for spot intensities using data from dye swap experiments. 
However, when there is a spatial bias across microarray surfaces. It is more advantageous to 
use a different normalization factor on each section of the microarray (12). 
 
Grouping 
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Normalization techniques remove global bias. The next task is to reveal genes that are co-
regulated in different cells or are expressed in different amounts at different time points. This is 
done through grouping. Grouping methods help data visualization and can be broadly divided 
into two sets: supervised and unsupervised. 
 
Unsupervised group is also known as clustering. These algorithms simplify large gene 
expression data sets by collecting similar profiles without prior knowledge of the data. Similarity 
among gene expression profiles is calculated based on distance metrics such as statistical 
correlation coefficient or Euclidean distance. Most common clustering strategies used include 
hierarchical clustering, self-organizing maps, and k-means clustering (11). 
 
Hierarchical clustering works similar to the distance method of generating phylogenetic trees. It 
is an iterative algorithm that  
1. Assigns each item to its own cluster.  
2. Identifies the closest pair of clusters, joins them together and consequently reducing the 

total number of clusters by one.  
3. Computes distances between the new cluster to all the old clusters. 
4. Repeat steps 2 and 3 until there is a single cluster left (13). 
Heirarchical clustering can be implemented easily, but is suffers from repeatability as the 
creation of branching point is often an arbitrary decision. 
 

 
Figure 3: Self-organizing maps. (A) Initial randomized data representing microarray data (B, C) processed data after 
applying SOM algorithm. Notice that SOM does not always guarantee a unique solution, but it can successfully 
assign similarities to members inside each group. Reference: http://davis.wpi.edu/~matt/courses/soms/ 

Self-organizing maps employ a different iterative algorithm where 
1. Initialization is performed by generating a random set of weights for each data. 
2. Randomly selecting a sample, the algorithm determines the best matched sample in the 

entire data space based on some distance metric. 
3. The weight of this closest sample and its “neighbors” are rewarded by becoming more like 

the sample vector through scaling. 
4. This process is repeated for many randomly selected samples until the weights do not move 

anymore.  
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An example shows the results of self-organizing maps on a set of colors, it can be seen that a 
data set represented by randomly distributed colors can be organized into groups of similar 
colors (Figure 3). However, the order of these colors is not always deterministic. Therefore, 
interpreting the meaning and relatedness of clusters could sometimes be a problem. 
 
K-means clustering, on the other hand, involves a predetermined number of desired clusters k. 
1. The method first randomly places the center of the k clusters. 
2. Then it calculates the distance from each sample to the closest cluster center. 
3. Using the distances within a cluster, calculate a new center for the cluster. 
4. Repeat the above 2 steps until cluster centers converge. 
This algorithm is useful when the expected k is known. However, that is not always the case. In 
addition, it can sometimes be stuck at local optima. Therefore, running the algorithm multiple 
times is a requirement. 
 
Unsupervised grouping can find new expression profiles but are not always designed to reliably 
reproduce groupings. Supervised grouping methods are usually termed classification and are 
extremely well suited for separating a collection of samples into known groups using previous 
expression knowledge. Classification algorithms are usually based on machine learning 
techniques such as regression, neural networks, and linear discriminant analysis. All of these 
methods require a set of known samples and their corresponding expression patterns to “learn”. 
Regression estimates a predictor function based on a linear log-likelihood model. Neural 
network creates a multi-layered computational network based on the training samples. It then 
uses that model to predict categories for each unknown cases. Finally, linear discriminant 
analysis estimates a probability distribution function for the genes and samples in the training 
set. Then, given a new sample, it tries to find the closest distribution and assigns the sample to 
that set. 
 

 
Figure 4: Microarray data on two different types of lymphoma expression patterns grouped using (A) unsupervised 
and (B) supervised methods. (A) Expressions are successfully clustered into two sets representing activated and 
germinal center subtypes. (B) Using LDA and a training set of both subtypes, all but one sample was classified 
incorrectly (marked in red) (11). 
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As a demonstration of grouping algorithms for single cell application, lymphoma samples using 
148 genes were clustered using k-mean clustering. The algorithm successfully separated the 
samples into 2 groups, representing the activated and germinal center subtypes. The separation 
results are 98% consistent with a correct reference data (Figure 4). Similarly, in the same review, 
supervised grouping methods are also applied to the same lymphoma set. A subset (10 
samples) of the data is correctly identified and used to train the algorithm while the rest of the 
data becomes the test set. The result shows that only one sample was classified incorrectly (11) 
(Figure 4).  
 
Feature Reduction 
 
Sometime during microarray analysis it is beneficial to reduce the dimensionality of the data in 
order to identify salient features. Similar to grouping, feature reduction methods can also be 
classified into supervised and unsupervised (11).  
 
Supervised feature reduction is called feature selection and has to do with selecting the 
important expression profiles in a data set while removing the less important profiles. This 
dimensional reduction helps to keep the analysis more focused. One way of performing 
supervised feature reduction is to iteratively perform supervised grouping and then removing the 
lease important expression measurement from all expression profiles.  
 
On the other hand, unsupervised feature reduction (data pruning) employs algorithms such as 
Singular Value Decomposition (SVD) and Independent Component Analysis (ICA). SVD (or 
sometimes known as Principal Component Analysis PCA) attempts to find a set of orthogonal 
eigenvectors of the expression data that essentially represent gene expression profiles of 
interest. SVD relies heavily on the theorem from linear algebra that any M by N matrix A (M > N) 
can be written as the product of a column orthogonal matrix U (M by N), a diagonal matrix W (N 
by N), and the transpose of an orthogonal matrix V (N by N) (12, 14).  
 

 
Figure 5: Singular value decomposition. Matrix A is the input expression data. The diagonal matrix W contains 
eigenvalues that assign importance of each vectors in V to the changes observed in A. Matrix VT contains the 
eigenvectors, and U contains the coefficients for the genes in those vectors. The horizontal bars on the right indicate 
how much information each eigenvector captures (12). 

In microarray data, M often represents the number of genes and N the number of samples 
(experiments). Then, U contains coefficients for each eigenvector, which indicates the amount 
of information contributed by each gene’s expression vector to the final data matrix A. 
Furthermore, since the diagonal entries of W contain decreasing weights, the corresponding 
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rows of VT are also arranged in the order of descending importance to expression variations in A 
(Figure 5). Therefore, SVD is a powerful method to extract the most important gene expression 
vectors that contribute to the expression variations in the final data. 
 
Independent component analysis (ICA) is another method to extract biological significant 
dimensions from microarray data. Compared to SVD, ICA assumes non-Gaussian expression 
variations and models the microarray observations as a linear combination of its components, 
which are chosen to be as independent as possible. Because it involves higher order statistics, 
ICA does not suffer as much from noise and artifacts introduced by the fact that gene 
expression data usually do not have Gaussian distributions (14). The fundamental equation that 
ICA tries to solve is	ܣ ൌ ܯ ൈ ܵ, where A is still the microarray data, S is a matrix containing 
independent components, and M is a mixing matrix. The goal of the algorithm is to find another 
matrix W, called the unmixing matrix, such that we can recover the independent components 
ܵ ൌ ܹ ൈ  .that contain information about the de-convolved gene expression profiles (15, 16) ܣ
Table 1 summarizes the various microarray related informatics methods.  
 

Table 1: Summary of Techniques Used in Microarray Data Analysis 

 Supervised Unsupervised 

Normalization 
 Preselecting housekeeping genes 
 Global mean normalization 
 Intensity dependent normalization 

Grouping 

 Regression 
 Neural networks 
 Linear discriminant 

analysis 

 Hierarchical clustering 
 Self-organizing maps 
 k-means clustering 

Feature 
Reduction 

 Iteratively remove least 
salient groups 

 Singular value decomposition 
 Independent component analysis 

 
 

RNA‐seq	Technology	
 
Compared to microarray, RNA-seq based on deep sequencing technology is a newer method to 
interrogate single cell transcriptome. Because it allows direct access to sequences of mRNA, 
bias and variation due to hybridization and labeling efficiencies are avoided. In addition, RNA-
seq allows the detection of RNA editing events, such as alternative splicing, the most important 
source of phenotypic diversity in eukaryotes (7). In an RNA-seq experiment, total RNA is first 
extracted from cell samples. Since rRNA represents the vast majority of total cellular RNA, to 
maximize diversity of the sequences retrieved from sequencing, it is of interest to reduce the 
quantity of rRNA present in the sample either by enrichment of polyadenylated RNA or by 
deletion of rRNA quantity (17). The enriched RNA sample is treated with DNase to remove any 
remaining DNA followed by cDNA synthesis. Depending on the sequencing platform and 
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analysis techniques use, cDNA is labeled using a variety of library creation procedure before 
loading (17, 18). Currently, there are many sequencing platforms available for single cell 
transcriptome sequencing including Illumina, Complete Genomics, Pacific Biosciences, and 
Helicose. Lam et al provides a performance comparison using two of the platforms (19).  
 

RNA‐seq	Analysis	Methods	
 
In addition to its cost, RNA-seq also generates order of magnitude more data per experiment. 
Therefore, computational power and data analysis techniques become crucial. Many packages 
such as TopHat, Cufflinks, and Scripture exist that perform annotation and quantification of 
transcriptome. These computational methods generally fall into 3 categories: sequence mapping, 
transcriptome reconstruction, and expression quantification (20). Figure 7 shows a table of 
computational packages and their respective applications. 
 
Sequence Mapping 
 
During sequence mapping, the short length of the RNS-seq reads and high error rates are often 
challenges for alignment methods. Two major classes of algorithms used to perform sequence 
mapping are unspliced aligners, which do not allow gaps, and spliced aligners that do allow 
gaps. Unspliced aligners are ideal for mapping reads against a reference cDNA database for 
quantification. These approaches sometimes use a ‘seed method’, where matches are found for 
small seed sequences that are assumed to match the reference (21). Alternatively, ‘Burrows-
Wheeler transform’ can be used which manipulates the data structure for fast searching of 
perfect matches (22). 
 

 
Figure 6: Schematic overview of two common spliced read aligner methods. (A) Exon-first (B) Seed-Extend (20) 

When only a distant reference cDNA database is available, unspliced alignment algorithms can 
be employed. These include the ‘exon first’ or ‘seed first’ approaches (Figure 6). These methods 
continuously map reads to the reference using unspliced methods. Those sequences that do 
not match are further broken down into shorter segments and aligned again. Finally, regions 
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around the mapped reads are searched for possible spliced events using more sensitive 
methods such as Smith-Waterman. Exon-first methods are faster and require less 
computational power. However, they can miss spliced alignments for reads that also maps to 
the genomic region. Seed-first methods evaluate spliced and unspliced events together to 
reduce bias (20).  
 
Transcriptome Reconstruction 
 
Transcriptome reconstruction involves defining a precise map of all the transcripts and isoforms 
expressed in a particular sample. This process may be challenging, again, for 3 reasons. The 
dynamic range of gene expression is high, the reads could be generated by mature as well as 
precursor RNA, and the reads are short with possibly many isoforms. To combat these 
difficulties, two approaches have been developed referred to as the genome-guided 
reconstruction and genome-independent reconstruction. 
 
Genome-guided reconstruction relies on a reference genome to which all reads are mapped. 
For short reads, exon identification methods can be used to define boundaries and establish 
connections between exons. For longer reads, methods such as Cufflinks and Scripture use 
genome-guided assembly methods to directly reconstruct the transcriptome from spliced reads 
(23, 24). In genome-independent reconstruction, consensus transcripts are first built from the 
reads and then mapped to a genome for annotation (25). A popular algorithm is the de Bruijn 
graph, which uses k-mers to reduce the complexity with handling millions of read. When 
comparing the 2 methods of reconstruction, the best method depends on the particular 
application. If a reference sequence is not present, genome-independent methods are the 
obvious choices. However, genome-guided methods can provide higher sensitivity for better 
annotation. 
 
Estimating Expression Levels 
 
The type of RNA-seq computational analysis that is most relevant to data from different time 
points of single cell samples has to do to estimating differential expression levels. However, in 
order to quantitatively estimate gene expression, read counts must be normalized. Instead of 
fluorescent intensity or labeling efficiency which cause bias in microarray experiments, sources 
of read variation for RNA-seq experiments result from two factors: RNA fragmentation during 
library construction causes longer transcripts to generate more reads and the variability in the 
number of read produced from each run causes fluctuations in the number of fragments 
mapped across samples (8).  
 
To normalize read counts, one can use the reads per kilobase of transcript per million mapped 
reads (RPKM) metric which normalizes transcript’s read count by both length and total number 
of mapped read. The fragments per kilobase of transcript per million mapped reads (FPKM) 
metric, on the other hand, is the analogous method to normalize paired-end reads. In addition to 
normalizing read counts, an understanding of expression variations across conditions is 
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required to correctly identify differential expression (20). As a result, many statistically based 
methods have been used to assign significance to expression levels.  
 

 
Figure 7: Comprehensive summary of a list of RNA-seq analysis programs used for 1 Read mapping 2 
Transcriptome reconstruction and 3 Expression quantification (20) 

 

Comparison	of	Microarray	and	RNA‐seq	Data	
 
Several groups have compared results from single cell transcriptome experiments using both 
microarray and RNA-seq data. Through these experiments, one can develop an understanding 
of the pros and cons of each technique and their associated informatics requirements. This part 
of the review will look at two specific studies that assess single cell expression results from 
microarray and RNA-seq on the same samples. 
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Figure 8: Comparison of microarray and RNA-seq expression data on cells from male and female Drosophila head. 
(A, B) Both male and female expression results across platforms show agreement until low expressed genes. (C) 
Reasonable measurement congruency for the entire data set but high in high in fold change measurements (7). 

Malone et al. looked at gene expression differences in Drosophila head cells between male and 
female (7). Using Illumina Genome Analyzer and Affymetrix microarray, the group saw strong 
congruence in relative array intensities compared to RNA-seq read counts (Figure 8). The group 
used biological replicates and moderate t-test to detect differentially expressed genes between 
female and males. Results show agreement between microarrays and RNA-seq for sex-biased 
expression. However, at low expression values, both platforms suffer from background noise 
causing scattering. 
 

 
Figure 9: Cross platform study on differential expression between liver and kidney cells. (A) Comparison of estimated 
log2 fold changes from microarray and sequencing data show strongest correlation when genes are mapped to by 
many read. Correlation is weaker for genes mapped to by fewer reads. (B) Venn diagram summarizing the overlap 
between genes called as differentially expressed (8). 
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Another experiment that compares Affymetrix microarray and Illumina RNA-seq is performed by 
Marioni et al. to compare liver and kidney RNA expression profiles (8). They used a set of 
17,708 array probes from annotated genes in the Ensembl database. For RNA-seq, 7 biological 
replicates are used. Data processing is done using ELAND. Out of all reads, 40% mapped 
uniquely to genomic locations, and 65% out of those mapped to autosomal or sex 
chromosomes. Comparing differentially expressed genes across technologies, they identified 
6534 differentially expressed genes called by both platforms (Figure 9). Sequencing data seems 
to call a larger number of differentially expressed genes.  
 

Conclusion	
 
With improvement in technologies and analysis algorithms, microarray and RNA-seq combined 
holds great promises to reveal deeper insights into the fundamentals of gene expression 
variations within and among single cells. Next generation sequencing technologies that offer 
higher read and throughput have made single cell transcriptomics applicable to studying 
subpopulations of tumor, differentiated embryonic stem cells, bacteria in a biofilm, and a 
plethora of other heterogeneous subpopulations within a community. Yet, most single cell RNA 
experiments are still limited to exploring spatial differences in gene expression. The true power 
of transcription analysis will come when we can track cell lineage and combine spatial with 
temporal expression patterns to elucidate spatiotemporal genetic regulatory networks of life. 
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